Skip to content
- Iheme, L. O., Önal, S., Erdem, Y. S., Uçar, M., Yalçın-Özuysal, Ö., Pesen-Okvur, D., Töreyin, B. U., Ünay, D. Collection: Wound Healing Assay Dataset (WHAD) and Cell Adhesion and Motility Assay Dataset (CAMAD), IEEE Data Descriptions, doi: 10.1109/IEEEDATA.2024.3481394.
- Erdem, Y. S., Iheme, L. O., Uçar, M., Özuysal, Ö. Y., Balıkçı, M., Morani, K., Töreyin, B. U., Ünay, D. Novel Neural Style Transfer based data synthesis method for phase-contrast wound healing assay images. Biomedical Signal Processing and Control, 96, 106514, 2024.
- Morani, K., Ayana, E. K., Kollias, D., & Unay, D. COVID‐19 Detection from Computed Tomography Images Using Slice Processing Techniques and a Modified Xception Classifier. International Journal of Biomedical Imaging, 2024(1), 9962839.
- Ucar, M., Iheme, L. O., Onal, S., Pesen-Okvur, D., Yalcin-Ozuysal, O., Toreyin, B. U., & Unay, D. Blank Frame and Intensity Variation Distortion Detection and Restoration Pipeline for Phase-Contrast Microscopy Time-Lapse Images. Electrica, 24(1), 2024.
- Morani, K., Unay, D., Deep Learning Based Automated COVID-19 Classification from Computed Tomography Images, Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, 11(6), 2145-2160, 2023.
- Yao, J., Xing, J., Zheng, F., Li, Z., Li, S., Xu, X., Unay, D., Song, Y.M., Yang, F., Wu, A., Dual-infinite coordination polymer-engineered nanomedicines for dual-ion interference-mediated oxidative stress-dependent tumor suppression, Materials Horizons, 2023.
- Argunşah, A. Ö., Erdil, E., Ghani, M. U., Cortés, Y. R., Hobbiss, A. F., Karayannis, T., Çetin, M., Israely, I., Ünay, D., An interactive time-series analysis software for dendritic spines, Scientific Reports, 12,12405, 2022.
- Unay, D., Deep Learning based Automatic Grading of Bi-Colored Apples using Multispectral Images, Multimedia Tools and Applications, 81, 38237–38252, 2022.
- Soyak, R., Navruz, E., Ersoy, E.O., Cruz, G., Prieto, C., King, A.P., Unay, D., Oksuz, I., Channel Attention Networks for Robust MR Fingerprint Matching, IEEE Transactions on Biomedical Imaging, 69(4), 1398-1405, 2022.
- Ayanzadeh, A., Ozuysal, O. Y., Okvur, D. P., Önal, S., Töreyin, B. U., Unay, D., Improved Cell Segmentation Using Deep Learning in Label-Free Optical Microscopy Images, Turkish Journal of Electrical Engineering & Computer Sciences, 29: 2855–2868, 2021.
- Erdem, Y. S., Ozuysal, O. Y., Okvur, D. P., Töreyin, B. U., Unay, D., An Image Segmentation Method for Wound Healing Assay Images, Natural and Applied Sciences Journal, 4(1), 30-37, 2021.
- Ünay, D, Harmankaya, I, Oksuz, I, Cubuk, R, Çelik, L, Kadipasaoglu, K, Model-free Automatic Segmentation of the Aortic Valve in Multislice Computed Tomography Images, PAJES, 27(2), 122-128, 2021.
- Comparative Analysis of Different Deep Learning Techniques for Automated Classification of Fruits and Vegetables, Unay, D., Turkish Studies-Applied Sciences, 15(4), 533-544, 2020.
- SSNOMBACTER: A collection of scattering-type Scanning Near-Field Optical Microscopy and Atomic Force Microscopy images of bacterial cells, M. Lucidi; D.E. Tranca; L. Nichele; D. Unay; G.A. Stanciu; P. Visca; A.M. Holban; R. Hristu; G. Cincotti; S.G. Stanciu, GigaScience, 9(11), 1-12, 2020.
- Rubens, U., Mormont, R., Baecker, V., Michiels, G., Paavolainen, L., Ball, G., Unay, D., Pavie, B., Chessel, A., Scholz, L., Maska, M., Hoyoux, R., Vandaele, R., Stanciu, S., Golani, O., Sladoje, N., Paul, P., Marée, R., Tosi, S., BIAFLOWS: A collaborative framework to benchmark bioimage analysis workflows, Patterns, 1(3), 100040, 2020. You can also check the interview in Prelights.
- Yalciner, B.Z., Kandemir, M., Taskale, S., Tepe, S.M., Unay, D., “Modified Visual MR Rating Scale for Evaluation of Patients with Forgetfulness” Canadian Journal of Neurological Sciences, 46 (1), 71-78, 2019.
- Rada, L., Kilic, B., Erdil, E., Ramiro-Cortez, Y., Israely, I., Unay, D., Cetin, M., Argunsah, A.O., “Tracking-assisted Detection of Dendritic Spines in Time Lapse Microscopic Images” Neuroscience, 394, 198-205, 2018.
- Unay, D., Stanciu, G.S., “An evaluation on the robustness of five popular keypoint descriptors to image modifications specific to laser scanning microscopy” IEEE Access, 6, 40154-40164, 2018.
- Müller, H., Unay, D., “Retrieval from and Understanding of Large-Scale Multi-Modal Medical Datasets: A Review”, IEEE Transactions on Multimedia, 19(9), 2093-2104, 2017.
- Erdil, E., Ghani, M.U., Rada, L., Argunsah, A.O., Unay, D., Tasdizen, T., Cetin, M., “Nonparametric Joint Shape and Feature Priors for Image Segmentation”, IEEE Transactions on Image Processing, 26(11), 5312-5323, 2017.
- Carass, A., et al., “Longitudinal Multiple Sclerosis Lesion Segmentation: Resource and Challenge” NeuroImage, 148, 77-102, 2017.
- Ghani, M.U., Mesadi, F., Kanik, S.D., Argunsah, A.O., Hobbiss, A.F., Israely, I., Unay, D., Tasdizen, T., Cetin, M., “Dendritic Spine Classification using Shape and Appearance Features based on Two-Photon Microscopy”, Journal of Neuroscience Methods, 279, 13-21, 2017.
- Cash, D.M., et al., “Assessing atrophy measurement techniques in dementia: Results from the MIRIAD atrophy challenge”, NeuroImage, 123, 149-164, 2015.
- Rudyanto, R.D., et al., “Comparing algorithms for automated vessel segmentation in computed tomography scans of the lung: The VESSEL12 study”, Medical Image Analysis, 18 (7), 1217-1232, 2014.
- Unay, D., Ozturk, C., Stone, M., “Single Syllable Tongue Motion Analysis Using Tagged Cine MRI”, Computer Methods in Biomechanics and Biomedical Engineering, 17 (8), 853-864, 2014.
- Kirişli, HA., et al., “Standardized Evaluation Framework for Evaluating Coronary Artery Stenosis Detection, Stenosis Quantification and Lumen Segmentation Algorithms in Computed Tomography Angiography”, Medical Image Analysis, 17 (8), 859-876, 2013.
- Kaya, M., Unay, D., “DressBoard: An Embedded System for Virtual Garment Trial”, The Journal of Signal Processing Systems, 73, 143-152, 2013.
- Unay, D., “Local and Global Volume Changes of Subcortical Brain Structures from Longitudinally Varying Neuroimaging Data for Dementia Identification”, Computerized Medical Imaging and Graphics, 36, 464-473, 2012.
- Ozogur-Akyuz, S., Unay, D., Smola, A., “Guest editorial: model selection and optimization in machine learning”, Machine Learning, 85 (1-2), 1-2, 2011.
- Unay, D., Gosselin, B., Kleynen, O, Leemans, V., Destain, M.-F., Debeir, O, “Automatic Grading of Bi-Colored Apples by Multispectral Machine Vision”, Computers and Electronics in Agriculture, 75(1), 204-212, 2011.
- Uzunbas, G., Soldea, O., Unay, D., Cetin, M., Unal, G., Ercil, A., Ekin, A., “Coupled Non-Parametric Shape and Moment-Based Inter-Shape Pose Priors for Multiple Basal Ganglia Structure Segmentation,” , IEEE Trans. Medical Imaging, 29(12), 1959-1978, 2010.
- Unay, D., Ekin, A., Jasinschi, R., “Local Structure-based Region-of-Interest Retrieval in Brain MR Images”, IEEE Trans. Information Technology in Biomedicine, 14(4), 897-903, 2010.
- Unay, D., Gosselin, B., “Stem and Calyx Recognition on ‘Jonagold’ Apples by Pattern Recognition”, Journal of Food Engineering, 78(2), 597-605, 2007.
- Unay, D., Gosselin, B., “Automatic Defect Segmentation of ‘Jonagold’ Apples on Multi-Spectral Images: A Comparative Study”, Journal of Postharvest Biology and Technology, 42(3), 271-279, 2006.